Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Protein & Cell ; (12): 947-964, 2021.
Article in English | WPRIM | ID: wpr-922496

ABSTRACT

Parthenogenetic embryos, created by activation and diploidization of oocytes, arrest at mid-gestation for defective paternal imprints, which impair placental development. Also, viable offspring has not been obtained without genetic manipulation from parthenogenetic embryonic stem cells (pESCs) derived from parthenogenetic embryos, presumably attributable to their aberrant imprinting. We show that an unlimited number of oocytes can be derived from pESCs and produce healthy offspring. Moreover, normal expression of imprinted genes is found in the germ cells and the mice. pESCs exhibited imprinting consistent with exclusively maternal lineage, and higher X-chromosome activation compared to female ESCs derived from the same mouse genetic background. pESCs differentiated into primordial germ cell-like cells (PGCLCs) and formed oocytes following in vivo transplantation into kidney capsule that produced fertile pups and reconstituted ovarian endocrine function. The transcriptome and methylation of imprinted and X-linked genes in pESC-PGCLCs closely resembled those of in vivo produced PGCs, consistent with efficient reprogramming of methylation and genomic imprinting. These results demonstrate that amplification of germ cells through parthenogenesis faithfully maintains maternal imprinting, offering a promising route for deriving functional oocytes and having potential in rebuilding ovarian endocrine function.


Subject(s)
Animals , Female , Mice , Mice, Transgenic , Mouse Embryonic Stem Cells/metabolism , Oocytes/metabolism , Parthenogenesis
2.
International Journal of Stem Cells ; : 31-42, 2019.
Article in English | WPRIM | ID: wpr-764063

ABSTRACT

BACKGROUND AND OBJECTIVES: Genomic imprinting modulates growth and development in mammals and is associated with genetic disorders. Although uniparental embryonic stem cells have been used to study genomic imprinting, there is an ethical issue associated with the destruction of human embryos. In this study, to investigate the genomic imprinting status in human neurodevelopment, we used human uniparental induced pluripotent stem cells (iPSCs) that possessed only maternal alleles and differentiated into neural cell lineages. METHODS: Human somatic iPSCs (hSiPSCs) and human parthenogenetic iPSCs (hPgiPSCs) were differentiated into neural stem cells (NSCs) and named hSi-NSCs and hPgi-NSCs respectively. DNA methylation and gene expression of imprinted genes related neurodevelopment was analyzed during reprogramming and neural lineage differentiation. RESULTS: The DNA methylation and expression of imprinted genes were altered or maintained after differentiation into NSCs. The imprinting status in NSCs were maintained after terminal differentiation into neurons and astrocytes. In contrast, gene expression was differentially presented in a cell type-specific manner. CONCLUSIONS: This study suggests that genomic imprinting should be determined in each neural cell type because the genomic imprinting status can differ in a cell type-specific manner. In addition, the in vitro model established in this study would be useful for verifying the epigenetic alteration of imprinted genes which can be differentially changed during neurodevelopment in human and for screening novel imprinted genes related to neurodevelopment. Moreover, the confirmed genomic imprinting status could be used to find out an abnormal genomic imprinting status of imprinted genes related with neurogenetic disorders according to uniparental genotypes.


Subject(s)
Humans , Alleles , Astrocytes , Cell Lineage , DNA Methylation , Embryonic Stem Cells , Embryonic Structures , Epigenomics , Ethics , Gene Expression , Genomic Imprinting , Genotype , Growth and Development , In Vitro Techniques , Induced Pluripotent Stem Cells , Mammals , Mass Screening , Neural Stem Cells , Neurons
3.
Chinese Journal of Biotechnology ; (12): 910-918, 2019.
Article in Chinese | WPRIM | ID: wpr-771835

ABSTRACT

Parthenogenetic embryonic stem cells (pESCs) derived from bi-maternal genomes do not have competency of tetraploid complementation, due to lacking of paternal imprinting genes. To make pESCs possess fully development potentials and similar pluripotency to zygote-derived ESCs, we knocked out one allelic gene of the two essential maternal imprinting genes (H19 and IG) in their differentially methylated regions (DMR) via CRISPR/Cas9 system and obtained double knock out (DKO) pESCs. Maternal pESCs had similar morphology, expression levels of pluripotent makers and in vitro neural differentiation potentials to zygotes-derived ESCs. Besides that, DKO pESCs could contribute to full-term fetuses through tetraploid complementation, proving that they held fully development potentials. Derivation of DKO pESCs provided a type of major histocompatibility complex (MHC) matched pluripotent stem cells, which would benefit research in regenerative medicine.


Subject(s)
Animals , Mice , Embryonic Stem Cells , Gene Knockout Techniques , Genomic Imprinting , Parthenogenesis , Pluripotent Stem Cells , Regenerative Medicine , Tetraploidy
4.
Genet. mol. biol ; 40(1): 153-159, Jan.-Mar. 2017. tab, graf
Article in English | LILACS | ID: biblio-892369

ABSTRACT

Abstract The sexually dimorphic expression of H19/IGF2 is evolutionarily conserved. To investigate whether the expression of H19/IGF2 in the female porcine eye is sex-dependent, gene expression and methylation status were evaluated using quantitative real-time PCR (qPCR) and bisulfite sequencing PCR (BSP). We hypothesized that H19/IGF2 might exhibit a different DNA methylation status in the female eye. In order to evaluate our hypothesis, parthenogenetic (PA) cells were used for analysis by qPCR and BSP. Our results showed that H19 and IGF2 were over-expressed in the female eye compared with the male eye (3-fold and 2-fold, respectively). We observed a normal monoallelic methylation pattern for H19 differentially methylated regions (DMRs). Compared with H19 DMRs, IGF2 DMRs showed a different methylation pattern in the eye. Taken together, these results suggest that elevated expression of H19/IGF2 is caused by a specific chromatin structure that is regulated by the DNA methylation status of IGF2 DMRs in the female eye.

5.
Journal of Veterinary Science ; : 519-528, 2014.
Article in English | WPRIM | ID: wpr-24548

ABSTRACT

The present study was conducted to develop an effective method for establishment of porcine parthenogenetic embryonic stem cells (ppESCs) from parthenogenetically activated oocyte-derived blastocysts. The addition of 10% fetal bovine serum (FBS) to the medium on the 3rd day of oocyte culturing improved the development of blastocysts, attachment of inner cell masses (ICMs) onto feeder cells, and formation of primitive ppESC colonies. ICM attachment was further enhanced by basic fibroblast growth factor, stem cell factor, and leukemia inhibitory factor. From these attached ICMs, seven ppESC lines were established. ppESC pluripotency was verified by strong enzymatic alkaline phosphatase activity and the expression of pluripotent markers OCT3/4, Nanog, and SSEA4. Moreover, the ppESCs were induced to form an embryoid body and teratoma. Differentiation into three germ layers (ectoderm, mesoderm, and endoderm) was confirmed by the expression of specific markers for the layers and histological analysis. In conclusion, data from the present study suggested that our modified culture conditions using FBS and cytokines are highly useful for improving the generation of pluripotent ppESCs.


Subject(s)
Animals , Blastocyst/cytology , Cell Culture Techniques/veterinary , Cell Differentiation , Cytokines/metabolism , Embryonic Stem Cells/cytology , Parthenogenesis , Pluripotent Stem Cells/cytology , Swine/physiology
6.
Neotrop. entomol ; 30(4): 607-612, Dec. 2001. graf, tab
Article in English | LILACS | ID: lil-514513

ABSTRACT

Infecções causadas por Wolbachia resultando em indivíduos paternogenéticos são comuns dentro do gênero Trichogramma. Contudo, os efeitos do microrganismo sobre a fecundidade e sobrevivência dos parasitóides têm sido relativamente pouco estudados. O objetivo desse estudo foi determinar os efeitos da bactéria na sobrevivência e reprodução de Trichogramma kaykai Pinto & Stouthamer, comparando indivíduos infectados (telítocos) com indivíduos curados através de antibiótico (arrenótocos), ambos criados em ovos de Trichoplusia ni Hübner. Fêmeas curadas produziram significativamente mais progênie, além de maior número de filhas que as fêmeas infectadas. Um número significativamente maior de indivíduos emergiu de ovos parasitados por fêmeas arrenótocas do que de ovos parasitados por fêmeas telítocas. As fêmeas não infectadas, contudo, viveram menos que as fêmeas infectadas. Fêmeas curadas apresentaram maturação de ovos mais rápida que fêmeas infectadas.


Parthenogenetic inducing Wolbachia infections are particularly common in the genus Trichogramma, but the influence of the microrganism on parasitoids' fitness has received relatively little attention. The aim of this study was to determine the effects of the bacteria on the survival and reproduction of Trichogramma kaykai Pinto & Stouthamer, comparing an infected line (thelytokous) with an antibiotically cured (arrhenotokous) line, both reared on Trichoplusia ni Hübner eggs. Cured wasps produced significantly more progeny and more daughters than Wolbachia-infected wasps. Significantly more wasps emerged per host when parasitized by the arrhenotokous females than by the thelytokous females. Cured females, however, lived significantly less than infected females. Eggs of cured females matured faster than infected ones.

SELECTION OF CITATIONS
SEARCH DETAIL